【1】 这项在线调研于2018年2月6日—2月16日进行,共有来自不同地区的2 135名受访者参与,他们代表了不同的行业、企业规模、职能专长和任期。为了对应答率的差异进行调整,相关数据根据受访者所在国家对全球国内生产总值(GDP)的贡献进行加权。
【2】 九项人工智能能力分别是:理解自然语言文本、理解自然语言讲话、生成自然语言、虚拟代理或对话界面、计算机视觉、机器学习、机器人、自动驾驶和机器人流程自动化(RPA)。有人认为RPA本身不应被归入人工智能,但是根据我们的经验,RPA系统正在结合越来越多的人工智能能力。
【3】 我们对数字化程度较高的企业的定义是平均数字化程度为51%或以上的企业。数字化程度根据下列衡量指标的平均百分比计算:通过数字渠道销售的产品及(或)服务的销售占比;具有数字本质的核心产品及(或)服务(例如,虚拟或数字增强);自动化及(或)数字化的核心操作;以及数字化的或通过与供应商的数字化互动而移动的供应链容量。
【4】 根据2017年对亚洲、欧洲及北美14个经济部门和10个国家的3 073家企业C级高管的调研,在向这些受访者了解企业采用人工智能技术的情况时,相关问题与我们最新的调研有所不同,具体来说,包括企业是否正在通过研究、试点或概念验证来探索人工智能;企业目前是否在使用人工智能技术,但不是针对核心业务或进行大规模使用;以及该技术是否针对核心业务进行大规模使用。这些问题中的最后一个选项与此次调研的两个选项最为相似:在至少一个职能或业务单元的标准业务流程中嵌入了人工智能能力,以及在多个职能或业务单元的流程中嵌入了人工智能能力。关于之前调研结果的更多详情,请参阅麦肯锡全球研究院发布的报告:Artificial intelligence: the next digital frontier ?2017年6月,McKinsey.com。
【5】 更多详情请参阅麦肯锡全球研究院的报告:Notes from the AI frontier:applications and value of deep learning,2018年4月,McKinsey.com。
【6】 只针对企业已部署人工智能的受访者,向其询问在不同职能中使用人工智能能够创造多少价值。
【7】 在我们看来,由于营销及销售工作通常部署了其他分析技术,因此人工智能为其带来的业绩提升可能不及较少使用分析技术的其他职能部门。
【8】更多详情请参阅麦肯锡全球研究院的报告:Harnessing automation for a future that works,2017年1月,McKinsey.com;Jobs lost, jobs gained: what the future of work will mean for jobs, skills, and wages,2017年11月,McKinsey.com;Skill shift:automation and the future of the workforce,2018年5月,McKinsey.com。
【9】 更多详情请参阅Oliver Fleming、Tim Fountaine、Nicolaus Henke和Tamim Saleh所著的“Ten red ags signaling your analytics program will fail”一文,2018年5月,McKinsey.com。
作者:
Michael Chui 和Sankalp Malhotra 负责本次调研的开发和分析。
Michael Chui 为麦肯锡全球研究院董事,常驻旧金山分公司;
Sankalp Malhotra 为麦肯锡前咨询顾问。
荐:
【中国风动漫】《姜子牙》刷屏背后,藏着中国动画100年内幕